Information theory approach to learning of the perceptron rule.
نویسندگان
چکیده
By recourse to a method based on information theory, we have studied the generalization problem in perceptrons. We considered different a priori distributions about the weights of the teacher perceptron. Our approach allows us to define the information gain from the examples used in the training procedure. The information gain can be used to choose a convenient example set for training the perceptron and to select the transfer function of the student perceptron.
منابع مشابه
Statistical Mechanics of On-line Ensemble Teacher Learning through a Novel Perceptron Learning Rule
In ensemble teacher learning, ensemble teachers have only uncertain information about the true teacher, and this information is given by an ensemble consisting of an infinite number of ensemble teachers whose variety is sufficiently rich. In this learning, a student learns from an ensemble teacher that is iteratively selected randomly from a pool of many ensemble teachers. An interesting point ...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملNips*97 the Eeciency and the Robustness of Natural Gradient Descent Learning Rule Sub-category: Dynamics of Learning Algorithms Category: Theory
We have discovered a new scheme to represent the Fisher information matrix of a stochastic multi-layer perceptron. Based on this scheme, we have designed an algorithm to compute the inverse of the Fisher information matrix. When the input dimension n is much larger than the number of hidden neurons, the complexity of this algorithm is of order O(n 2) while the complexity of conventional algorit...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 64 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2001